Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38690930

RESUMO

Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1-treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7 and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated GLUT4 and increased insulin-dependent glucose uptake compared to myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.

2.
Immun Ageing ; 21(1): 23, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570813

RESUMO

BACKGROUND: It is of interest whether inflammatory biomarkers can improve dementia prediction models, such as the widely used Cardiovascular Risk Factors, Aging and Dementia (CAIDE) model. METHODS: The Olink Target 96 Inflammation panel was assessed in a nested case-cohort design within a large, population-based German cohort study (n = 9940; age-range: 50-75 years). All study participants who developed dementia over 20 years of follow-up and had complete CAIDE variable data (n = 562, including 173 Alzheimer's disease (AD) and 199 vascular dementia (VD) cases) as well as n = 1,356 controls were selected for measurements. 69 inflammation-related biomarkers were eligible for use. LASSO logistic regression and bootstrapping were utilized to select relevant biomarkers and determine areas under the curve (AUCs). RESULTS: The CAIDE model 2 (including Apolipoprotein E (APOE) ε4 carrier status) predicted all-cause dementia, AD, and VD better than CAIDE model 1 (without APOE ε4) with AUCs of 0.725, 0.752 and 0.707, respectively. Although 20, 7, and 4 inflammation-related biomarkers were selected by LASSO regression to improve CAIDE model 2, the AUCs did not increase markedly. CAIDE models 1 and 2 generally performed better in mid-life (50-64 years) than in late-life (65-75 years) sub-samples of our cohort, but again, inflammation-related biomarkers did not improve their predictive abilities. CONCLUSIONS: Despite a lack of improvement in dementia risk prediction, the selected inflammation-related biomarkers were significantly associated with dementia outcomes and may serve as a starting point to further elucidate the pathogenesis of dementia.

4.
Metabolites ; 14(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38668343

RESUMO

Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, a chronic granulomatous enteritis leading to economic losses and posing a risk to human health due to its zoonotic potential. The pathogen cannot reliably be detected by standard methods, and immunological procedures during the infection are not well understood. Therefore, the aim of our study was to explore host-pathogen interactions in MAP-infected dairy cows and to improve diagnostic tests. Serum proteomics analysis using quantitative label-free LC-MS/MS revealed 60 differentially abundant proteins in MAP-infected dairy cows compared to healthy controls from the same infected herd and 90 differentially abundant proteins in comparison to another control group from an uninfected herd. Pathway enrichment analysis provided new insights into the immune response to MAP and susceptibility to the infection. Furthermore, we found a higher abundance of Cathepsin S (CTSS) in the serum of MAP-infected dairy cows, which is involved in multiple enriched pathways associated with the immune system. Confirmed with Western blotting, we identified CTSS as a potential biomarker for bovine paratuberculosis. This study enabled a better understanding of procedures in the host-pathogen response to MAP and improved detection of paratuberculosis-diseased cattle.

5.
RNA ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580456

RESUMO

Ribosomes translate mRNA into proteins and are essential for every living organism. In eukaryotes both ribosomal subunits are rapidly assembled in a strict hierarchical order, starting in the nucleolus with transcription of a common precursor ribosomal RNA (pre-rRNA). This pre-rRNA encodes three of the four mature rRNAs which are formed by several, consecutive endonucleolytic and exonucleolytic processing steps. Historically, Northern Blots are used to analyze the variety of different pre-rRNA species, only allowing rough length estimations. Although this limitation can be overcome with Primer Extension, both approaches often use radioactivity and are time consuming and costly. Here we present "Riboprobing" a reverse transcription-based workflow extended by linker ligation for easy and fast detection and characterization of various pre-rRNA species and their 5` as well as 3` ends. Using standard molecular biology lab equipment, our technique allows reliable discrimination of pre-rRNA species not resolved by Northern Blotting (e.g.: 27SA2, 27SA3 and 27SB). The method can be successfully used for analysis of total cell extracts as well as purified pre-ribosomes for a straightforward evaluation of the impact of mutant gene versions or inhibitors. In the course of method development, we identified and characterized a hitherto undescribed aberrant pre-rRNA, arising from LiCl inhibition. This pre-rRNA fragment spans from processing site A1 to E, forming a small RNP that is lacking most early joining assembly factors. This finding expands our knowledge of how the cell deals with severe pre-rRNA processing defects and demonstrates the strict requirement for the 5'ETS for the assembly process.

6.
Cell Death Dis ; 15(4): 286, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653992

RESUMO

The progression of human degenerative and hypoxic/ischemic diseases is accompanied by widespread cell death. One death process linking iron-catalyzed reactive species with lipid peroxidation is ferroptosis, which shows hallmarks of both programmed and necrotic death in vitro. While evidence of ferroptosis in neurodegenerative disease is indicated by iron accumulation and involvement of lipids, a stable marker for ferroptosis has not been identified. Its prevalence is thus undetermined in human pathophysiology, impeding recognition of disease areas and clinical investigations with candidate drugs. Here, we identified ferroptosis marker antigens by analyzing surface protein dynamics and discovered a single protein, Fatty Acid-Binding Protein 5 (FABP5), which was stabilized at the cell surface and specifically elevated in ferroptotic cell death. Ectopic expression and lipidomics assays demonstrated that FABP5 drives redistribution of redox-sensitive lipids and ferroptosis sensitivity in a positive-feedback loop, indicating a role as a functional biomarker. Notably, immunodetection of FABP5 in mouse stroke penumbra and in hypoxic postmortem patients was distinctly associated with hypoxically damaged neurons. Retrospective cell death characterized here by the novel ferroptosis biomarker FABP5 thus provides first evidence for a long-hypothesized intrinsic ferroptosis in hypoxia and inaugurates a means for pathological detection of ferroptosis in tissue.


Assuntos
Biomarcadores , Proteínas de Ligação a Ácido Graxo , Ferroptose , Proteínas de Neoplasias , Proteínas de Ligação a Ácido Graxo/metabolismo , Animais , Humanos , Biomarcadores/metabolismo , Camundongos , Hipóxia Encefálica/metabolismo , Hipóxia Encefálica/patologia , Camundongos Endogâmicos C57BL , Peroxidação de Lipídeos , Masculino
7.
Biol Sex Differ ; 15(1): 26, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532495

RESUMO

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key player of lipid metabolism with higher plasma levels in women throughout their life. Statin treatment affects PCSK9 levels also showing evidence of sex-differential effects. It remains unclear whether these differences can be explained by genetics. METHODS: We performed genome-wide association meta-analyses (GWAS) of PCSK9 levels stratified for sex and statin treatment in six independent studies of Europeans (8936 women/11,080 men respectively 14,825 statin-free/5191 statin-treated individuals). Loci associated in one of the strata were tested for statin- and sex-interactions considering all independent signals per locus. Independent variants at the PCSK9 gene locus were then used in a stratified Mendelian Randomization analysis (cis-MR) of PCSK9 effects on low-density lipoprotein cholesterol (LDL-C) levels to detect differences of causal effects between the subgroups. RESULTS: We identified 11 loci associated with PCSK9 in at least one stratified subgroup (p < 1.0 × 10-6), including the PCSK9 gene locus and five other lipid loci: APOB, TM6SF2, FADS1/FADS2, JMJD1C, and HP/HPR. The interaction analysis revealed eight loci with sex- and/or statin-interactions. At the PCSK9 gene locus, there were four independent signals, one with a significant sex-interaction showing stronger effects in men (rs693668). Regarding statin treatment, there were two significant interactions in PCSK9 missense mutations: rs11591147 had stronger effects in statin-free individuals, and rs11583680 had stronger effects in statin-treated individuals. Besides replicating known loci, we detected two novel genome-wide significant associations: one for statin-treated individuals at 6q11.1 (within KHDRBS2) and one for males at 12q24.22 (near KSR2/NOS1), both with significant interactions. In the MR of PCSK9 on LDL-C, we observed significant causal estimates within all subgroups, but significantly stronger causal effects in statin-free subjects compared to statin-treated individuals. CONCLUSIONS: We performed the first double-stratified GWAS of PCSK9 levels and identified multiple biologically plausible loci with genetic interaction effects. Our results indicate that the observed sexual dimorphism of PCSK9 and its statin-related interactions have a genetic basis. Significant differences in the causal relationship between PCSK9 and LDL-C suggest sex-specific dosages of PCSK9 inhibitors.


The protein "proprotein convertase subtilisin/kexin type 9" (PCSK9) regulates the levels of low-density lipoprotein cholesterol (LDL-C) in blood, and thus, contributes to the risk of cardio-vascular diseases. Women tend to have higher PCSK9 plasma levels throughout their life, although the difference is smaller in patients under LDL-C lowering medication (e.g., statins). We investigated the interplay of genetics, statin-treatment and sex, using combined data from six European studies. We detected 11 genetic regions associated with PCSK9 levels, of which one was specific for women (at SLCO1B3, a statin-transporter gene), and three were specific for men (e.g., ALOX5, encoding a protein linked to chronic inflammatory diseases such as atherosclerosis). We also tested if statin use changed the genetic effect and found five genes only associated with PCSK9 levels in untreated participants. Variants in the gene encoding PCSK9 were most strongly associated and had heterogeneous effects in dependence on statin treatment and sex: On one hand, there were genetic variants with stronger effects in men than women. Those variants are also linked to sex-differential gene expression of PCSK9. On the other hand, there were also variants with treatment-depending effects, linked to protein structure and functionality of PCSK9. This indicates that the observed sexual and treatment-related effects on PCSK9 levels have a genetic basis. In addition, we compared the causal effects of PCSK9 on LDL-C levels between men and women and found a different response to statin treatment. This highlights the need for sex-sensitive dosages of lipid-lowering medication.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Masculino , Humanos , Feminino , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Estudo de Associação Genômica Ampla , LDL-Colesterol/genética , Oxirredutases N-Desmetilantes , Histona Desmetilases com o Domínio Jumonji
8.
Hypertension ; 81(5): 1156-1166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38445514

RESUMO

BACKGROUND: Hypertension, a complex condition, is primarily defined based on blood pressure readings without involving its pathophysiological mechanisms. We aimed to identify biomarkers through a proteomic approach, thereby enhancing the future definition of hypertension with insights into its molecular mechanisms. METHODS: The discovery analysis included 1560 participants, aged 55 to 74 years at baseline, from the KORA (Cooperative Health Research in the Region of Augsburg) S4/F4/FF4 cohort study, with 3332 observations over a median of 13.4 years of follow-up. Generalized estimating equations were used to estimate the associations of 233 plasma proteins with hypertension and systolic blood pressure (SBP). For validation, proteins significantly associated with hypertension or SBP in the discovery analysis were validated in the KORA Age1/Age2 cohort study (1024 participants, 1810 observations). A 2-sample Mendelian randomization analysis was conducted to infer causalities of validated proteins with SBP. RESULTS: Discovery analysis identified 49 proteins associated with hypertension and 99 associated with SBP. Validation in the KORA Age1/Age2 study replicated 7 proteins associated with hypertension and 23 associated with SBP. Three proteins, NT-proBNP (N-terminal pro-B-type natriuretic peptide), KIM1 (kidney injury molecule 1), and OPG (osteoprotegerin), consistently showed positive associations with both outcomes. Five proteins demonstrated potential causal associations with SBP in Mendelian randomization analysis, including NT-proBNP and OPG. CONCLUSIONS: We identified and validated 7 hypertension-associated and 23 SBP-associated proteins across 2 cohort studies. KIM1, NT-proBNP, and OPG demonstrated robust associations, and OPG was identified for the first time as associated with blood pressure. For NT-proBNP (protective) and OPG, causal associations with SBP were suggested.


Assuntos
Hipertensão , Proteômica , Humanos , Pressão Sanguínea/fisiologia , Estudos de Coortes , Biomarcadores , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos
9.
Nature ; 627(8004): 671-679, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448585

RESUMO

DNA and histone modifications combine into characteristic patterns that demarcate functional regions of the genome1,2. While many 'readers' of individual modifications have been described3-5, how chromatin states comprising composite modification signatures, histone variants and internucleosomal linker DNA are interpreted is a major open question. Here we use a multidimensional proteomics strategy to systematically examine the interaction of around 2,000 nuclear proteins with over 80 modified dinucleosomes representing promoter, enhancer and heterochromatin states. By deconvoluting complex nucleosome-binding profiles into networks of co-regulated proteins and distinct nucleosomal features driving protein recruitment or exclusion, we show comprehensively how chromatin states are decoded by chromatin readers. We find highly distinctive binding responses to different features, many factors that recognize multiple features, and that nucleosomal modifications and linker DNA operate largely independently in regulating protein binding to chromatin. Our online resource, the Modification Atlas of Regulation by Chromatin States (MARCS), provides in-depth analysis tools to engage with our results and advance the discovery of fundamental principles of genome regulation by chromatin states.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina , Proteínas Nucleares , Nucleossomos , Proteômica , Humanos , Sítios de Ligação , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA/genética , DNA/metabolismo , Elementos Facilitadores Genéticos , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/metabolismo , Proteínas Nucleares/análise , Proteínas Nucleares/metabolismo , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteômica/métodos
10.
Cardiovasc Diabetol ; 23(1): 53, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310303

RESUMO

BACKGROUND: Coronary heart disease (CHD) is a major global health concern, especially among individuals with type 2 diabetes (T2D). Given the crucial role of proteins in various biological processes, this study aimed to elucidate the aetiological role and predictive performance of protein biomarkers on incident CHD in individuals with and without T2D. METHODS: The discovery cohort included 1492 participants from the Cooperative Health Research in the Region of Augsburg (KORA) S4 study with 147 incident CHD cases (45 vs. 102 cases in the group with T2D and without T2D, respectively) during 15.6 years of follow-up. The validation cohort included 888 participants from the KORA-Age1 study with 70 incident CHD cases (19 vs. 51 cases in the group with T2D and without T2D, respectively) during 6.9 years of follow-up. We measured 233 plasma proteins related to cardiovascular disease and inflammation using proximity extension assay technology. Associations of proteins with incident CHD were assessed using Cox regression and Mendelian randomization (MR) analysis. Predictive models were developed using priority-Lasso and were evaluated on top of Framingham risk score variables using the C-index, category-free net reclassification index (cfNRI), and relative integrated discrimination improvement (IDI). RESULTS: We identified two proteins associated with incident CHD in individuals with and 29 in those without baseline T2D, respectively. Six of these proteins are novel candidates for incident CHD. MR suggested a potential causal role for hepatocyte growth factor in CHD development. The developed four-protein-enriched model for individuals with baseline T2D (ΔC-index: 0.017; cfNRI: 0.253; IDI: 0.051) and the 12-protein-enriched model for individuals without baseline T2D (ΔC-index: 0.054; cfNRI: 0.462; IDI: 0.024) consistently improved CHD prediction in the discovery cohort, while in the validation cohort, significant improvements were only observed for selected performance measures (with T2D: cfNRI: 0.633; without T2D: ΔC-index: 0.038; cfNRI: 0.465). CONCLUSIONS: This study identified novel protein biomarkers associated with incident CHD in individuals with and without T2D and reaffirmed previously reported protein candidates. These findings enhance our understanding of CHD pathophysiology and provide potential targets for prevention and treatment.


Assuntos
Doença das Coronárias , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Proteômica , Medição de Risco , Doença das Coronárias/diagnóstico , Doença das Coronárias/epidemiologia , Fatores de Risco , Biomarcadores
11.
J Neuroinflammation ; 21(1): 33, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273366

RESUMO

Diabetic retinopathy (DR) is considered a primarily microvascular complication of diabetes. Müller glia cells are at the centre of the retinal neurovascular unit and play a critical role in DR. We therefore investigated Müller cell-specific signalling pathways that are altered in DR to identify novel targets for gene therapy. Using a multi-omics approach on purified Müller cells from diabetic db/db mice, we found the mRNA and protein expression of the glucocorticoid receptor (GR) to be significantly decreased, while its target gene cluster was down-regulated. Further, oPOSSUM TF analysis and ATAC- sequencing identified the GR as a master regulator of Müller cell response to diabetic conditions. Cortisol not only increased GR phosphorylation. It also induced changes in the expression of known GR target genes in retinal explants. Finally, retinal functionality was improved by AAV-mediated overexpression of GR in Müller cells. Our study demonstrates an important role of the glial GR in DR and implies that therapeutic approaches targeting this signalling pathway should be aimed at increasing GR expression rather than the addition of more ligand.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Diabetes Mellitus/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Células Ependimogliais/metabolismo , Neuroglia/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Retina/metabolismo
12.
Thorax ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38286613

RESUMO

INTRODUCTION: Environmental pollutants injure the mucociliary elevator, thereby provoking disease progression in chronic obstructive pulmonary disease (COPD). Epithelial resilience mechanisms to environmental nanoparticles in health and disease are poorly characterised. METHODS: We delineated the impact of prevalent pollutants such as carbon and zinc oxide nanoparticles, on cellular function and progeny in primary human bronchial epithelial cells (pHBECs) from end-stage COPD (COPD-IV, n=4), early disease (COPD-II, n=3) and pulmonary healthy individuals (n=4). After nanoparticle exposure of pHBECs at air-liquid interface, cell cultures were characterised by functional assays, transcriptome and protein analysis, complemented by single-cell analysis in serial samples of pHBEC cultures focusing on basal cell differentiation. RESULTS: COPD-IV was characterised by a prosecretory phenotype (twofold increase in MUC5AC+) at the expense of the multiciliated epithelium (threefold reduction in Ac-Tub+), resulting in an increased resilience towards particle-induced cell damage (fivefold reduction in transepithelial electrical resistance), as exemplified by environmentally abundant doses of zinc oxide nanoparticles. Exposure of COPD-II cultures to cigarette smoke extract provoked the COPD-IV characteristic, prosecretory phenotype. Time-resolved single-cell transcriptomics revealed an underlying COPD-IV unique basal cell state characterised by a twofold increase in KRT5+ (P=0.018) and LAMB3+ (P=0.050) expression, as well as a significant activation of Wnt-specific (P=0.014) and Notch-specific (P=0.021) genes, especially in precursors of suprabasal and secretory cells. CONCLUSION: We identified COPD stage-specific gene alterations in basal cells that affect the cellular composition of the bronchial elevator and may control disease-specific epithelial resilience mechanisms in response to environmental nanoparticles. The identified phenomena likely inform treatment and prevention strategies.

13.
J Proteome Res ; 23(1): 117-129, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38015820

RESUMO

The foundation for integrating mass spectrometry (MS)-based proteomics into systems medicine is the development of standardized start-to-finish and fit-for-purpose workflows for clinical specimens. An essential step in this pursuit is to highlight the common ground in a diverse landscape of different sample preparation techniques and liquid chromatography-mass spectrometry (LC-MS) setups. With the aim to benchmark and improve the current best practices among the proteomics MS laboratories of the CLINSPECT-M consortium, we performed two consecutive round-robin studies with full freedom to operate in terms of sample preparation and MS measurements. The six study partners were provided with two clinically relevant sample matrices: plasma and cerebrospinal fluid (CSF). In the first round, each laboratory applied their current best practice protocol for the respective matrix. Based on the achieved results and following a transparent exchange of all lab-specific protocols within the consortium, each laboratory could advance their methods before measuring the same samples in the second acquisition round. Both time points are compared with respect to identifications (IDs), data completeness, and precision, as well as reproducibility. As a result, the individual performances of participating study centers were improved in the second measurement, emphasizing the effect and importance of the expert-driven exchange of best practices for direct practical improvements.


Assuntos
Plasma , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fluxo de Trabalho , Reprodutibilidade dos Testes , Plasma/química
14.
Nat Med ; 29(12): 3149-3161, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38066208

RESUMO

The glial environment influences neurological disease progression, yet much of our knowledge still relies on preclinical animal studies, especially regarding astrocyte heterogeneity. In murine models of traumatic brain injury, beneficial functions of proliferating reactive astrocytes on disease outcome have been unraveled, but little is known regarding if and when they are present in human brain pathology. Here we examined a broad spectrum of pathologies with and without intracerebral hemorrhage and found a striking correlation between lesions involving blood-brain barrier rupture and astrocyte proliferation that was further corroborated in an assay probing for neural stem cell potential. Most importantly, proteomic analysis unraveled a crucial signaling pathway regulating this astrocyte plasticity with GALECTIN3 as a novel marker for proliferating astrocytes and the GALECTIN3-binding protein LGALS3BP as a functional hub mediating astrocyte proliferation and neurosphere formation. Taken together, this work identifies a therapeutically relevant astrocyte response and their molecular regulators in different pathologies affecting the human cerebral cortex.


Assuntos
Astrócitos , Células-Tronco Neurais , Humanos , Camundongos , Animais , Astrócitos/patologia , Proteômica , Encéfalo , Sistema Nervoso Central
15.
Biomolecules ; 13(9)2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37759700

RESUMO

The majority of peptides presented by MHC class I result from proteasomal protein turnover. The specialized immunoproteasome, which is induced during inflammation, plays a major role in antigenic peptide generation. However, other cellular proteases can, either alone or together with the proteasome, contribute peptides to MHC class I loading non-canonically. We used an immunopeptidomics workflow combined with prediction software for proteasomal cleavage probabilities to analyze how inflammatory conditions affect the proteasomal processing of immune epitopes presented by A549 cells. The treatment of A549 cells with IFNγ enhanced the proteasomal cleavage probability of MHC class I ligands for both the constitutive proteasome and the immunoproteasome. Furthermore, IFNγ alters the contribution of the different HLA allotypes to the immunopeptidome. When we calculated the HLA allotype-specific proteasomal cleavage probabilities for MHC class I ligands, the peptides presented by HLA-A*30:01 showed characteristics hinting at a reduced C-terminal proteasomal cleavage probability independently of the type of proteasome. This was confirmed by HLA-A*30:01 ligands from the immune epitope database, which also showed this effect. Furthermore, two additional HLA allotypes, namely, HLA-A*03:01 and HLA-A*11:01, presented peptides with a markedly reduced C-terminal proteasomal cleavage probability. The peptides eluted from all three HLA allotypes shared a peptide binding motif with a C-terminal lysine residue, suggesting that this lysine residue impairs proteasome-dependent HLA ligand production and might, in turn, favor peptide generation by other cellular proteases.


Assuntos
Lisina , Complexo de Endopeptidases do Proteassoma , Ligantes , Endopeptidases , Epitopos , Probabilidade , Antígenos HLA-A
16.
Front Cell Dev Biol ; 11: 1240039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691832

RESUMO

Spermatogenesis is a crucial biological process that enables the production of functional sperm, allowing for successful reproduction. Proper germ cell differentiation and maturation require tight regulation of hormonal signals, cellular signaling pathways, and cell biological processes. The acrosome is a lysosome-related organelle at the anterior of the sperm head that contains enzymes and receptors essential for egg-sperm recognition and fusion. Even though several factors crucial for acrosome biogenesis have been discovered, the precise molecular mechanism of pro-acrosomal vesicle formation and fusion is not yet known. In this study, we investigated the role of the insulin inhibitory receptor (inceptor) in acrosome formation. Inceptor is a single-pass transmembrane protein with similarities to mannose-6-phosphate receptors (M6PR). Inceptor knockout male mice are infertile due to malformations in the acrosome and defects in the nuclear shape of spermatozoa. We show that inceptor is expressed in early spermatids and mainly localizes to vesicles between the Golgi apparatus and acrosome. Here we show that inceptor is an essential factor in the intracellular transport of trans-Golgi network-derived vesicles which deliver acrosomal cargo in maturing spermatids. The absence of inceptor results in vesicle-fusion defects, acrosomal malformation, and male infertility. These findings support our hypothesis of inceptor as a universal lysosomal or lysosome-related organelle sorting receptor expressed in several secretory tissues.

17.
Nucleic Acids Res ; 51(16): 8691-8710, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37395448

RESUMO

5-Methyluridine (m5U) is one of the most abundant RNA modifications found in cytosolic tRNA. tRNA methyltransferase 2 homolog A (hTRMT2A) is the dedicated mammalian enzyme for m5U formation at tRNA position 54. However, its RNA binding specificity and functional role in the cell are not well understood. Here we dissected structural and sequence requirements for binding and methylation of its RNA targets. Specificity of tRNA modification by hTRMT2A is achieved by a combination of modest binding preference and presence of a uridine in position 54 of tRNAs. Mutational analysis together with cross-linking experiments identified a large hTRMT2A-tRNA binding surface. Furthermore, complementing hTRMT2A interactome studies revealed that hTRMT2A interacts with proteins involved in RNA biogenesis. Finally, we addressed the question of the importance of hTRMT2A function by showing that its knockdown reduces translation fidelity. These findings extend the role of hTRMT2A beyond tRNA modification towards a role in translation.


Assuntos
RNA de Transferência , tRNA Metiltransferases , Animais , Humanos , Mamíferos/genética , Metilação , RNA/metabolismo , RNA de Transferência/metabolismo , tRNA Metiltransferases/metabolismo
18.
BMC Med ; 21(1): 245, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407978

RESUMO

BACKGROUND: Due to the asymptomatic nature of the early stages, chronic kidney disease (CKD) is usually diagnosed at late stages and lacks targeted therapy, highlighting the need for new biomarkers to better understand its pathophysiology and to be used for early diagnosis and therapeutic targets. Given the close relationship between CKD and cardiovascular disease (CVD), we investigated the associations of 233 CVD- and inflammation-related plasma proteins with kidney function decline and aimed to assess whether the observed associations are causal. METHODS: We included 1140 participants, aged 55-74 years at baseline, from the Cooperative Health Research in the Region of Augsburg (KORA) cohort study, with a median follow-up time of 13.4 years and 2 follow-up visits. We measured 233 plasma proteins using a proximity extension assay at baseline. In the discovery analysis, linear regression models were used to estimate the associations of 233 proteins with the annual rate of change in creatinine-based estimated glomerular filtration rate (eGFRcr). We further investigated the association of eGFRcr-associated proteins with the annual rate of change in cystatin C-based eGFR (eGFRcys) and eGFRcr-based incident CKD. Two-sample Mendelian randomization was used to infer causality. RESULTS: In the fully adjusted model, 66 out of 233 proteins were inversely associated with the annual rate of change in eGFRcr, indicating that higher baseline protein levels were associated with faster eGFRcr decline. Among these 66 proteins, 21 proteins were associated with both the annual rate of change in eGFRcys and incident CKD. Mendelian randomization analyses on these 21 proteins suggest a potential causal association of higher tumor necrosis factor receptor superfamily member 11A (TNFRSF11A) level with eGFR decline. CONCLUSIONS: We reported 21 proteins associated with kidney function decline and incident CKD and provided preliminary evidence suggesting a potential causal association between TNFRSF11A and kidney function decline. Further Mendelian randomization studies are needed to establish a conclusive causal association.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Pessoa de Meia-Idade , Masculino , Humanos , Feminino , Idoso , Estudos de Coortes , Proteômica , Insuficiência Renal Crônica/genética , Taxa de Filtração Glomerular , Rim , Creatinina
19.
J Control Release ; 360: 613-629, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437848

RESUMO

The blood-brain barrier (BBB) is a highly selective biological barrier that represents a major bottleneck in the treatment of all types of central nervous system (CNS) disorders. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach, e.g., for brain tumors, by downregulating brain tumor-related genes and inhibiting tumor growth via RNA interference. In an effort to develop efficient siRNA nanocarriers for crossing the BBB, we utilized polyethyleneimine (PEI) polymers hydrophobically modified with either stearic-acid (SA) or dodecylacrylamide (DAA) subunits and evaluated their suitability for delivering siRNA across the BBB in in vitro and in vivo BBB models depending on their structure. Physicochemical characteristics of siRNA-polymer complexes (polyplexes (PXs)), e.g., particle size and surface charge, were measured by dynamic light scattering and laser Doppler anemometry, whereas siRNA condensation ability of polymers and polyplex stability was evaluated by spectrophotometric methods. The composition of the biomolecule corona that absorbs on polyplexes upon encountering physiological fluids was investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method. Cellular internalization abilities of PXs into brain endothelial cells (hCMEC/D3) was confirmed, and a BBB permeation assay using a human induced pluripotent stem cell (hiPSC)-derived BBB model revealed similar abilities to cross the BBB for all formulations under physiological conditions. However, biodistribution studies of radiolabeled PXs in mice were inconsistent with in vitro results as the detected amount of radiolabeled siRNA in the brain delivered with PEI PXs was higher compared to PEI-SA PXs. Taken together, PEI PXs were shown to be a suitable nanocarrier to deliver small amounts of siRNA across the BBB into the brain but more sophisticated human BBB models that better represent physiological conditions and biodistribution are required to provide highly predictive in vitro data for human CNS drug development in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Polietilenoimina , Humanos , Animais , Camundongos , Polietilenoimina/química , RNA Interferente Pequeno , Barreira Hematoencefálica/metabolismo , Distribuição Tecidual , Células Endoteliais/metabolismo , RNA de Cadeia Dupla , Polímeros/química , Permeabilidade
20.
Int J Pharm ; 643: 123257, 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37482228

RESUMO

In the field of non-viral drug delivery, polyplexes (PXs) represent an advanced investigated and highly promising tool for the delivery of nucleic acids. Upon encountering physiological fluids, they adsorb biological molecules to form a protein corona (PC), that influence PXs biodistribution, transfection efficiencies and targeting abilities. In an effort to understand protein - PX interactions and the effect of PX material on corona composition, we utilized cationic branched 10 kDa polyethyleneimine (b-PEI) and a hydrophobically modified nylon-3 polymer (NM0.2/CP0.8) within this study to develop appropriate methods for PC investigations. A centrifugation procedure for isolating hard corona - PX complexes (PCPXs) from soft corona proteins after incubating the PXs in fetal bovine serum (FBS) for PC formation was successfully optimized and the identification of proteins by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method clearly demonstrated that the PC composition is affected by the underlying PXs material. With regard to especially interesting functional proteins, which might be able to induce active targeting effects, several candidates could be detected on b-PEI and NM0.2/CP0.8 PXs. These results are of high interest to better understand how the design of PXs impacts the PC composition and subsequently PCPXs-cell interactions to enable precise adjustment of PXs for targeted drug delivery.


Assuntos
Técnicas de Transferência de Genes , Coroa de Proteína , Coroa de Proteína/metabolismo , DNA/química , Distribuição Tecidual , Transfecção , Polietilenoimina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA